Brief description
You will be introduced to the field of EV research with the theorertical background and technical challenges in isolation and characterization of EVs. We will then discuss how to explore EV function in vitro and in vivo and, lastly the diagnostic and therapeutic potential of EVs (e.g. as drug delivery systems, vaccines). During the practical sessions, you will learn how to isolate EVs using size exclusion chromatography (qEV) and a polymer precipitation technique. The size distribution and numbers of EVs isolated will be determined using nanoparticle tracking analysis (NTA). Classical EV makers will be identified using Western Blot, and proteomics will be used to explore how different conditions affect the protein content of EVs. Though the focus of the course will be on mouse and human EVs, we will also cover and discuss EVs from non-model organisms, including outer membrane vesicles (OMVs) and some of their specific challenges and opportunities (e.g. drug delivery system). As many of the methods and considerations for working with EVs are the same irrespectively of their source, this course is relevant for most people interested or already active in the EV field.